1,161 research outputs found

    Type A GABA-receptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo.

    Get PDF
    The emergence of dendritic arbor structure in vivo depends on synaptic inputs. We tested whether inhibitory GABAergic synaptic transmission regulates Xenopus optic tectal cell dendritic arbor development in vivo by expressing a peptide corresponding to an intracellular loop (ICL) of the γ2 subunit of GABAAR which is required to anchor GABAA receptors to the postsynaptic scaffold. GFP-tagged ICL (EGFP-ICL) was distributed in a punctate pattern at putative inhibitory synapses, identified by VGAT-immunoreactive puncta. ICL expression completely blocked GABAAR - mediated transmission in 36% of transfected neurons and significantly reduced GABAAR - mediated synaptic currents relative to AMPAR-mediated synaptic currents in the remaining transfected neurons without altering release probability or neuronal excitability. Further analysis of ICL-expressing neurons with residual GABAAR- mediated inputs showed that the capacity of benzodiazepine to enhance GABAergic synaptic responses was reduced in ICL-expressing neurons, indicating that they were likely depleted of γ2 subunit-containing GABAAR. Neurons expressing a mutant form of ICL were comparable to controls. In vivo time-lapse images showed that ICL-expressing neurons have more sparsely branched dendritic arbors which expand over larger neuropil areas than EGFP-expressing control neurons. Analysis of branch dynamics indicated that ICL expression affected arbor growth by reducing rates of branch addition. Furthermore, we found that decreasing GABAergic synaptic transmission with ICL expression blocked visual experience dependent dendritic arbor structural plasticity. Our findings establish an essential role for inhibitory GABAergic synaptic transmission in the regulation of dendritic structural plasticity in Xenopus in vivo

    Baryogenesis and gravity waves from a UV-completed electroweak phase transition

    Get PDF
    We study gravity wave production and baryogenesis at the electroweak phase transition in a real singlet scalar extension of the Standard Model, including vectorlike top partners, to generate the CP violation needed for electroweak baryogenesis (EWBG). The singlet makes the phase transition strongly first order through its coupling to the Higgs boson, and it spontaneously breaks CP invariance through a dimension-five contribution to the top quark mass term, generated by integrating out the heavy top quark partners. We improve on previous studies by incorporating updated transport equations, compatible with large bubble wall velocities. The wall speed and thickness are computed directly from the microphysical parameters rather than treating them as free parameters, allowing for a first-principles computation of the baryon asymmetry. The size of the CP-violating dimension-five operator needed for EWBG is constrained by collider, electroweak precision, and renormalization group running constraints. We identify regions of parameter space that can produce the observed baryon asymmetry or observable gravitational wave (GW) signals. Contrary to standard lore, we find that for strong deflagrations, the efficiencies of large baryon asymmetry production and strong GW signals can be positively correlated. However, we find the overall likelihood of observably large GW signals to be smaller than estimated in previous studies. In particular, only detonation-type transitions are predicted to produce observably large gravitational waves.Peer reviewe

    Limits on the parameters of the equation of state for interacting dark energy

    Full text link
    Under the assumption that cold dark matter and dark energy interact with each other through a small coupling term, QQ, we constrain the parameter space of the equation of state ww of those dark energy fields whose variation of the field since last scattering do not exceed Planck's mass. We use three parameterizations of ww and two different expressions for QQ. Our work extends previous ones.Comment: 18 pages, 11 figures, accepted for publication on Physics Letters

    Codimension Two Branes in Einstein-Gauss-Bonnet Gravity

    Full text link
    Codimension two branes play an interesting role in attacking the cosmological constant problem. Recently, in order to handle some problems in codimension two branes in Einstein gravity, Bostock {\it et al.} have proposed using six-dimensional Einstein-Gauss-Bonnet (EGB) gravity instead of six-dimensional Einstein gravity. In this paper, we present the solutions of codimension two branes in six-dimensional EGB gravity. We show that Einstein's equations take a "factorizable" form for a factorized metric tensor ansatz even in the presence of the higher-derivative Gauss-Bonnet term. Especially, a new feature of the solution is that the deficit angle depends on the brane geometry. We discuss the implication of the solution to the cosmological constant problem. We also comment on a possible problem of inflation model building on codimension two branes.Comment: 16 pages, no figures. v2: References added; v3: Reference added, Sec.4 and 5 combined into one; v4: References added, minor corrections, to appear in Physical Review

    Braneworld models of dark energy

    Full text link
    We explore a new class of braneworld models in which the scalar curvature of the (induced) brane metric contributes to the brane action. The scalar curvature term arises generically on account of one-loop effects induced by matter fields residing on the brane. Spatially flat braneworld models can enter into a regime of accelerated expansion at late times. This is true even if the brane tension and the bulk cosmological constant are tuned to satisfy the Randall--Sundrum constraint on the brane. Braneworld models admit a wider range of possibilities for dark energy than standard LCDM. In these models the luminosity distance can be both smaller and larger than the luminosity distance in LCDM. Whereas models with dLdL(LCDM)d_L \leq d_L(\rm LCDM) imply w=p/ρ1w = p/\rho \geq -1 and have frequently been discussed in the literature, models with dL>dL(LCDM)d_L > d_L(\rm LCDM) have traditionally been ignored, perhaps because within the general-relativistic framework, the luminosity distance has this property {\em only if} the equation of state of matter is strongly negative (w<1w < -1). Matter with w<1w < -1 is beset with a host of undesirable properties, which makes this model of dark energy unattractive within the conventional framework. Braneworld models, on the other hand, have the capacity to endow dark energy with exciting new possibilities without suffering from the problems faced by models with w<1w < -1. For a subclass of parameter values, braneworld dark energy and the acceleration of the universe are {\em transient} phenomena. In these models, the universe, after the current period of acceleration, re-enters the matter dominated regime so that the deceleration parameter q(t)0.5q(t) \to 0.5 when tt0t \gg t_0, where t0t_0 is the present epoch. Such models could help reconcile an accelerating universe with the requirements of string/M-theory.Comment: 17 pages, latex, 8 figures. Minor changes to match version published in JCA

    Electroweak baryogenesis

    Get PDF
    Electroweak baryogenesis (EWBG) remains a theoretically attractive and experimentally testable scenario for explaining the cosmic baryon asymmetry. We review recent progress in computations of the baryon asymmetry within this framework and discuss their phenomenological consequences. We pay particular attention to methods for analyzing the electroweak phase transition and calculating CP-violating asymmetries, the development of Standard Model extensions that may provide the necessary ingredients for EWBG, and searches for corresponding signatures at the high energy, intensity, and cosmological frontiers.Comment: 42 pages, 13 figures, invited review for the New Journal of Physics focus issue on 'Origin of Matter

    A comparison of hospital readmission rates between two general physicians with different outpatient review practices

    Get PDF
    BACKGROUND: There has been a relentless increase in emergency medical admissions in the UK over recent years. Many of these patients suffer with chronic conditions requiring continuing medical attention. We wished to determine whether conventional outpatient clinic follow up after discharge has any impact on the rate of readmission to hospital. METHODS: Two consultant general physicians with the same patient case-mix but markedly different outpatient follow-up practice were chosen. Of 1203 patients discharged, one consultant saw twice as many patients in the follow-up clinic than the other (Dr A 9.8% v Dr B 19.6%). The readmission rate in the twelve months following discharge was compared in a retrospective analysis of hospital activity data. Due to the specialisation of the admitting system, patients mainly had cardiovascular or cerebrovascular disease or had taken an overdose. Few had respiratory or infectious diseases. Outpatient follow-up was focussed on patients with cardiac disease. RESULTS: Risk of readmission increased significantly with age and length of stay of the original episode and was less for digestive system and musculo-skeletal disorders. 28.7% of patients discharged by Dr A and 31.5 % of those discharged by Dr B were readmitted at least once. Relative readmission risk was not significantly different between the consultants and there was no difference in the length of stay of readmissions. CONCLUSIONS: Increasing the proportion of patients with this age- and case-mix who are followed up in a hospital general medical outpatient clinic is unlikely to reduce the demand for acute hospital beds

    Protecting the primordial baryon asymmetry in the seesaw model compatible with WMAP and KamLAND

    Full text link
    We require that the primordial baryon asymmetry is not washed out in the seesaw model compatible with the recent results of WMAP and the neutrino oscillation experiments including the first results of KamLAND. We find that only the case of the normal neutrino mass hierarchy with an approximate LeL_{e}-symmetry satisfies the requirement. We further derive, depending on the signs of neutrino mass eigenvalues, three types of neutrino mass matrixes, where the values of each element are rather precisely fixed.Comment: 21pages; added reference

    Excluding Electroweak Baryogenesis in the MSSM

    Full text link
    In the context of the MSSM the Light Stop Scenario (LSS) is the only region of parameter space that allows for successful Electroweak Baryogenesis (EWBG). This possibility is very phenomenologically attractive, since it allows for the direct production of light stops and could be tested at the LHC. The ATLAS and CMS experiments have recently supplied tantalizing hints for a Higgs boson with a mass of ~ 125 GeV. This Higgs mass severely restricts the parameter space of the LSS, and we discuss the specific predictions made for EWBG in the MSSM. Combining data from all the available ATLAS and CMS Higgs searches reveals a tension with the predictions of EWBG even at this early stage. This allows us to exclude EWBG in the MSSM at greater than (90) 95% confidence level in the (non-)decoupling limit, by examining correlations between different Higgs decay channels. We also examine the exclusion without the assumption of a ~ 125 GeV Higgs. The Higgs searches are still highly constraining, excluding the entire EWBG parameter space at greater than 90% CL except for a small window of m_h ~ 117 - 119 GeV.Comment: 24 Pages, 4 Figures (v3: fixed typos, minor corrections, added references
    corecore